Dynamics of stochastic 2D Navier–Stokes equations
نویسندگان
چکیده
In this paper, we study the dynamics of a two-dimensional stochastic Navier-Stokes equation on a smooth domain, driven by multiplicative white noise. We show that solutions of the 2D Navier-Stokes equation generate a perfect and locally compacting C1,1 cocycle. Using multiplicative ergodic theory techniques, we establish the existence of a discrete non-random Lyapunov spectrum for the cocycle. The Lyapunov spectrum characterizes the asymptotics of the cocycle near the zero equilibrium solution. We give sufficient conditions on the parameters of the Navier-Stokes equation and the geometry of the planar domain which guarantee hyperbolicity of the equilibrium, uniqueness of the stationary solution (viz. ergodicity), local almost sure asymptotic stability of the cocycle, and the existence of global invariant foliations of the energy space. AMS Subject Classification: Primary 60H15 Secondary 60F10, 35Q30.
منابع مشابه
On Inviscid Limits for the Stochastic Navier-Stokes Equations and Related Models
We study inviscid limits of invariant measures for the 2D Stochastic Navier-Stokes equations. As shown in [Kuk04] the noise scaling p ν is the only one which leads to non-trivial limiting measures, which are invariant for the 2D Euler equations. We show that any limiting measure μ0 is in fact supported on bounded vorticities. Relationships of μ0 to the long term dynamics of Euler in the L∞ with...
متن کاملInviscid Limit of Stochastic Damped 2d Navier-stokes Equations
We consider the inviscid limit of the stochastic damped 2D NavierStokes equations. We prove that, when the viscosity vanishes, the stationary solution of the stochastic damped Navier-Stokes equations converges to a stationary solution of the stochastic damped Euler equation and that the rate of dissipation of enstrophy converges to zero. In particular, this limit obeys an enstrophy balance. The...
متن کاملErgodic properties of highly degenerate 2D stochastic Navier-Stokes equations
This note presents the results from “Ergodicity of the degenerate stochastic 2D Navier-Stokes equation” by M. Hairer and J. C. Mattingly. We study the Navier-Stokes equation on the two-dimensional torus when forced by a finite-dimensional Gaussian white noise and give conditions under which the system is ergodic. In particular, our results hold for specific choices of four-dimensional Gaussian ...
متن کاملSmooth Solutions of Non-linear Stochastic Partial Differential Equations
Abstract. In this paper, we study the regularities of solutions of nonlinear stochastic partial differential equations in the framework of Hilbert scales. Then we apply our general result to several typical nonlinear SPDEs such as stochastic Burgers and Ginzburg-Landau’s equations on the real line, stochastic 2D Navier-Stokes equations in the whole space and a stochastic tamed 3D Navier-Stokes ...
متن کاملExponential Ergodicity for Stochastic Burgers and 2d Navier-stokes Equations
It is shown that transition measures of the stochastic Navier-Stokes equation in 2D converge exponentially fast to the corresponding invariant measures in the distance of total variation. As a corollary we obtain the existence of spectral gap for a related semigroup obtained by a sort of ground state trasformation. Analogous results are proved for the stochastic Burgers equation.
متن کامل